Key and related publications on BEEHAVE


Twiston-Davies, G., Becher, M. A.,  Osborne, J. L. (2021) BEE-STEWARD: a research and decision-support software for effective land management to promote bumblebee populations. Methods Ecol Evol


Becher, M. A., Twiston-Davies, G., Penny, T. D., Goulson, D., Rotheray, E. L., Osborne, J. L. (2018) Bumble-BEEHAVE: a systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level. J Appl Ecol


Becher, M. A., Grimm, V., Knapp, J., Horn, J., Twiston-Davies, G., & Osborne, J. L. (2016). BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE. Ecol Model, 340, 126-133.


Becher, M.A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P.J. & Osborne, J.L. (2014). BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J Appl Ecol, 51, 470-482.

Becher, M.A., Osborne, J.L., Thorbek, P., Kennedy, P.J. & Grimm, V. (2013). REVIEW: Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J Appl Ecol, 50, 868-880.


Bulson, L., Becher, M.A., McKinley, T.J., Wilfert, L. (2020).
Longterm effects of antibiotic treatments on honeybee colony fitness: A modelling approach. J Appl Ecol.

Horn, J., Becher, M.A., Johst, K., Kennedy, P.K., Osborne, J.L., Radchuk, V., Grimm, V. (2020). Honey bee colony performance affected by crop diversity and farmland structure: a modeling framework. Ecological Applications.

Abi-Akar, F., Schmolke, A., Roy, C., Galic, N., Hinarejos, S. (2020). Simulating Honey Bee Large‐Scale Colony Feedings Studies Using the BEEHAVE Model. Part II: Analysis of Overwintering Outcomes. Environmental Toxicology and Chemistry.

Schmolke, A., Abi-Akar, F., Roy, C., Galic, N., Hinarejos, S. (2020). Simulating Honey Bee Large‐Scale Colony Feeding Studies Using the BEEHAVE Model. Part I: Model Validation. Environmental Toxicology and Chemistry.

Carter, L.J., Agatz, A., Kumar, A., Williams, M (2020). Translocation of pharmaceuticals from wastewater into beehives. Environmental Toxicology and Chemistry.

Agatz, A., Kuhl, R., Miles, M., Schad, T., Preuss, T.G. (2019). An Evaluation of the BEEHAVE Model Using Honey Bee Field Study Data: Insights and Recommendations. Environmental Toxicology and Chemistry.

Knapp, J.L., Becher, M.A., Rankin, C.C., Twiston-Davies, G., Osborne, J.L. (2019). Bombus terrestris in a mass‐flowering pollinator‐dependent crop: A mutualistic relationship? Ecology and Evolution.

Requier, F., Rome, Q., Villemant, C., Henry, M. (2019). A biodiversity‑friendly method to mitigate the invasive Asian hornet’s impact on European honey bees. Journal of Pest Science.

Schmolke, A., Abi-Akar, F., Hinarejos, S. (2019). Honey bee colony-level exposure and effects in realistic landscapes: an application of BEEHAVE simulating Clothianidin residues in corn pollen. Environmental Toxicology and Chemistry.

Prado, A., Pioz, M., Vidau, C., Requier, F., Jury, M., Crauser, D., Brunet, J.-L., Le Conte, Y. & Alaux, C. (2019). Exposure to pollen-bound pesticide mixtures induces longer-lived but less efficient honey bees. Science of The Total Environment.

Requier, F., Rome, Q., Chiron, G., Decante, D., Marion, S., Menard, M., Muller, F., Villemant, C. & Henry, M. (2018) Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. Journal of Pest Science.

Rumkee, J. C. O., Becher, M. A., Thorbek, P., & Osborne, J. L. (2017). Modelling effects of honeybee behaviors on the distribution of pesticide in nectar within a hive and resultant in-hive exposure. Environmental Science & Technology.

Henry, M., Becher, M.A., Osborne, J., Kennedy, P., Aupinel, P., Bretagnolle, V., Brun, F., Grimm, V., Horn, J., Requier, F. (2017) Predictive systems models can help elucidate bee declines driven by multiple combined stressors. Apidologie  48: 328–339.


Thorbek, P., Campbell, P. J., & Thompson, H. M. (2016). Colony impact of pesticide‐induced sublethal effects on honeybee workers: A simulation study using BEEHAVE. Environ Toxicol Chem.


Horn, J., Becher, M.A., Kennedy, P.J., Osborne, J.L. & Grimm, V. (2016). Multiple stressors: using the honeybee model BEEHAVE to explore how spatial and temporal forage stress affects colony resilience. Oikos, 125, 1001-1016.

McMahon, D.P., Natsopoulou, M.E., Doublet, V., Furst, M., Wegings, S., Brown, M.J., Gogol-Doring, A., & Paxton, R.J. (2016) Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc Biol Sci. 283, 1833.

Thorbek, P., Campbell, P.J., Sweeny, P.J., & Thompson, H.M., (2016). Using BEEHAVE to explore pesticide protection goals for European honeybee (Apis melifera L.) worker losses at different forage qualities. Environ Toxicol Chem.

EFSA. (2015). Statement on the suitability of the BEEHAVE model for its potential use in a regulatory context and for the risk assessment of multiple stressors in honeybees at the landscape level. EFSA Journal, 13, 91.

Rumkee, J.C.O., Becher, M.A., Thorbek, P., Kennedy, P.J. & Osborne, J.L. (2015). Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides. Environmental Science & Technology, 49, 12879-12887.

Grimm, V., Becher, M.A., Kennedy, P.J., Thorbek, P., Osborne, J. (2014) Ecological modeling for pesticide risk assessment of honeybees and other pollinators. In: Fischer D, Moriarty T. Pesticide risk assessment for pollinators. SETAC Press (Pensacola, FL), p. 149-162.

Whilst we select these links carefully, we cannot guarantee, or be held responsible for their quality or content.

Photo © Pete Kenedy