PUBLICATIONS

Key and related publications on BEEHAVE

KEY PUBLICATIONS

Twiston-Davies, G., Becher, M. A.,  Osborne, J. L. (2021) BEE-STEWARD: a research and decision-support software for effective land management to promote bumblebee populations. Methods Ecol Evol

 

Becher, M. A., Twiston-Davies, G., Penny, T. D., Goulson, D., Rotheray, E. L., Osborne, J. L. (2018) Bumble-BEEHAVE: a systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level. J Appl Ecol

 

Becher, M. A., Grimm, V., Knapp, J., Horn, J., Twiston-Davies, G., & Osborne, J. L. (2016). BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE.Ecol Model, 340, 126-133.

Becher, M. A., Grimm, V., Knapp, J., Horn, J., Twiston-Davies, G., & Osborne, J. L. (2016). BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE.J Appl Ecol, 51,470-482.

Becher, M.A., Osborne, J.L., Thorbek, P., Kennedy, P.J. & Grimm, V. (2013). REVIEW: Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J Appl Ecol, 50, 868-880.

RELATED PUBLICATIONS

Becher, M. A., Twiston‐Davies, G., Osborne, J. L., & Lander, T. A. (2024). Resource gaps pose the greatest threat for bumblebees during the colony establishment phase. Insect Conservation and Diversity.
Groeneveld, J., Odemer, R., & Requier, F. (2024). Brood indicators are an early warning signal of honey bee colony loss—a simulation-based study. Plos one, 19(5), e0302907.
Baden-Böhm, F., Dauber, J., & Thiele, J. (2023). Biodiversity measures providing food and nesting habitat increase the number of bumblebee (Bombus terrestris) colonies in modelled agricultural landscapes. Agriculture, Ecosystems & Environment, 356, 108649.
Agatz, A., Miles, M., Roeben, V., Schad, T., van der Stouwe, F., Zakharova, L., & Preuss, T. G. (2023). Evaluating and explaining the variability of honey bee field studies across Europe using BEEHAVE. Environmental Toxicology and Chemistry.
Preuss, T. G., Agatz, A., Goussen, B., Roeben, V., Rumkee, J., Zakharova, L., & Thorbek, P. (2022). The BEEHAVEecotox Model—Integrating a Mechanistic Effect Module into the Honeybee Colony Model. Environmental Toxicology and Chemistry, 41(11), 2870-2882.
Nearman, A., & VanEngelsdorp, D. (2022). Water provisioning increases caged worker bee lifespan and caged worker bees are living half as long as observed 50 years ago. Scientific Reports, 12(1), 18660.
Schödl, I., Odemer, R., Becher, M. A., Berg, S., Otten, C., Grimm, V., & Groeneveld, J. (2022). Simulation of Varroa mite control in honey bee colonies without synthetic acaricides: Demonstration of Good Beekeeping Practice for Germany in the BEEHAVE model. Ecology and Evolution, 12(11), e9456.
Reiner, D., Spangenberg, M. C., Grimm, V., Groeneveld, J., & Wiegand, K. (2022). Chronic and acute effects of imidacloprid on a simulated BEEHAVE honeybee colony. Environmental Toxicology and Chemistry, 41(9), 2318-2327.
Baden-Böhm, F., Thiele, J., & Dauber, J. (2022). Response of honeybee colony size to flower strips in agricultural landscapes depends on areal proportion, spatial distribution and plant composition. Basic and Applied Ecology, 60, 123-138.
Schott, M., Sandmann, M., Cresswell, J. E., Becher, M. A., Eichner, G., Brandt, D. T., … & Brandt, A. (2021). Honeybee colonies compensate for pesticide-induced effects on royal jelly composition and brood survival with increased brood production. Scientific Reports, 11(1), 1-15.
Horn, J., Becher, M. A., Johst, K., Kennedy, P. J., Osborne, J. L., Radchuk, V., & Grimm, V. (2021). Honey bee colony performance affected by crop diversity and farmland structure: a modeling framework. Ecological Applications, 31(1), e02216.
Chen, J., DeGrandi-Hoffman, G., Ratti, V., & Kang, Y. (2021). Review on mathematical modeling of honeybee population dynamics. Mathematical Biosciences and Engineering, 18(6).
Borges, S., Alkassab, A. T., Collison, E., Hinarejos, S., Jones, B., McVey, E., … & Wassenberg, J. (2021). Overview of the testing and assessment of effects of microbial pesticides on bees: strengths, challenges and perspectives. Apidologie, 1-22.
European Food Safety Authority (EFSA), Ippolito, A., Focks, A., Rundlöf, M., Arce, A., Marchesi, M., … & Auteri, D. (2021). Analysis of background variability of honey bee colony size. EFSA Journal, 18(3), 6518E
EFSA Scientific Committee, More, S., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T., … & Rortais, A. (2021). A systems-based approach to the environmental risk assessment of multiple stressors in honey bees. EFSA Journal, 19(5), e06607
Grindrod, I., & Martin, S. J. (2021). Parallel evolution of Varroa resistance in honey bees: a common mechanism across continents? Proceedings of the Royal Society B, 288(1956), 20211375.
Bulson, L., Becher, M.A., McKinley, T.J., Wilfert, L. (2020).
Longterm effects of antibiotic treatments on honeybee colony fitness: A modelling approach. J Appl Ecol.
Horn, J., Becher, M.A., Johst, K., Kennedy, P.K., Osborne, J.L., Radchuk, V., Grimm, V. (2020). Honey bee colony performance affected by crop diversity and farmland structure: a modeling framework. Ecological Applications.

Abi-Akar, F., Schmolke, A., Roy, C., Galic, N., Hinarejos, S. (2020). Simulating Honey Bee Large‐Scale Colony Feedings Studies Using the BEEHAVE Model. Part II: Analysis of Overwintering Outcomes. Environmental Toxicology and Chemistry.

Schmolke, A., Abi-Akar, F., Roy, C., Galic, N., Hinarejos, S. (2020). Simulating Honey Bee Large‐Scale Colony Feeding Studies Using the BEEHAVE Model. Part I: Model Validation. Environmental Toxicology and Chemistry.

Carter, L.J., Agatz, A., Kumar, A., Williams, M (2020). Translocation of pharmaceuticals from wastewater into beehives. Environmental Toxicology and Chemistry.

Agatz, A., Kuhl, R., Miles, M., Schad, T., Preuss, T.G. (2019). An Evaluation of the BEEHAVE Model Using Honey Bee Field Study Data: Insights and Recommendations. Environmental Toxicology and Chemistry.

Knapp, J.L., Becher, M.A., Rankin, C.C., Twiston-Davies, G., Osborne, J.L. (2019). Bombus terrestris in a mass‐flowering pollinator‐dependent crop: A mutualistic relationship? Ecology and Evolution.

Requier, F., Rome, Q., Villemant, C., Henry, M. (2019). A biodiversity‑friendly method to mitigate the invasive Asian hornet’s impact on European honey bees. Journal of Pest Science.

Schmolke, A., Abi-Akar, F., Hinarejos, S. (2019). Honey bee colony-level exposure and effects in realistic landscapes: an application of BEEHAVE simulating Clothianidin residues in corn pollen. Environmental Toxicology and Chemistry.

Prado, A., Pioz, M., Vidau, C., Requier, F., Jury, M., Crauser, D., Brunet, J.-L., Le Conte, Y. & Alaux, C. (2019). Exposure to pollen-bound pesticide mixtures induces longer-lived but less efficient honey bees. Science of The Total Environment.

Requier, F., Rome, Q., Chiron, G., Decante, D., Marion, S., Menard, M., Muller, F., Villemant, C. & Henry, M. (2018) Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. Journal of Pest Science.

Rumkee, J. C. O., Becher, M. A., Thorbek, P., & Osborne, J. L. (2017). Modelling effects of honeybee behaviors on the distribution of pesticide in nectar within a hive and resultant in-hive exposure. Environmental Science & Technology.

Henry, M., Becher, M.A., Osborne, J., Kennedy, P., Aupinel, P., Bretagnolle, V., Brun, F., Grimm, V., Horn, J., Requier, F. (2017) Predictive systems models can help elucidate bee declines driven by multiple combined stressors. Apidologie  48: 328–339.

 

Thorbek, P., Campbell, P. J., & Thompson, H. M. (2016). Colony impact of pesticide‐induced sublethal effects on honeybee workers: A simulation study using BEEHAVE. Environ Toxicol Chem.

 

Horn, J., Becher, M.A., Kennedy, P.J., Osborne, J.L. & Grimm, V. (2016). Multiple stressors: using the honeybee model BEEHAVE to explore how spatial and temporal forage stress affects colony resilience. Oikos, 125, 1001-1016.

McMahon, D.P., Natsopoulou, M.E., Doublet, V., Furst, M., Wegings, S., Brown, M.J., Gogol-Doring, A., & Paxton, R.J. (2016) Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc Biol Sci. 283, 1833.

Thorbek, P., Campbell, P.J., Sweeny, P.J., & Thompson, H.M., (2016). Using BEEHAVE to explore pesticide protection goals for European honeybee (Apis melifera L.) worker losses at different forage qualities. Environ Toxicol Chem.

EFSA. (2015). Statement on the suitability of the BEEHAVE model for its potential use in a regulatory context and for the risk assessment of multiple stressors in honeybees at the landscape level. EFSA Journal, 13, 91.

Rumkee, J.C.O., Becher, M.A., Thorbek, P., Kennedy, P.J. & Osborne, J.L. (2015). Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides. Environmental Science & Technology, 49, 12879-12887.

Grimm, V., Becher, M.A., Kennedy, P.J., Thorbek, P., Osborne, J. (2014) Ecological modeling for pesticide risk assessment of honeybees and other pollinators. In: Fischer D, Moriarty T. Pesticide risk assessment for pollinators. SETAC Press (Pensacola, FL), p. 149-162.

Whilst we select these links carefully, we cannot guarantee, or be held responsible for their quality or content.

Photo © Pete Kenedy